3.168 \(\int \cot ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=66 \[ -\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {4 a^2 \cot (c+d x) \sqrt {a \sec (c+d x)+a}}{d} \]

[Out]

-2*a^(5/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d-4*a^2*cot(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3887, 453, 203} \[ -\frac {4 a^2 \cot (c+d x) \sqrt {a \sec (c+d x)+a}}{d}-\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-2*a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - (4*a^2*Cot[c + d*x]*Sqrt[a + a*Sec[c
+ d*x]])/d

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rubi steps

\begin {align*} \int \cot ^2(c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=-\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {2+a x^2}{x^2 \left (1+a x^2\right )} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {4 a^2 \cot (c+d x) \sqrt {a+a \sec (c+d x)}}{d}+\frac {\left (2 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {4 a^2 \cot (c+d x) \sqrt {a+a \sec (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.83, size = 124, normalized size = 1.88 \[ -\frac {\sqrt {2} \cot (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {1}{\sec (c+d x)+1}\right )^{3/2} (a (\sec (c+d x)+1))^{5/2} \left (2 \cos (c+d x)-\frac {(\cos (c+d x)-1) \tanh ^{-1}\left (\sqrt {1-\sec (c+d x)}\right )}{\sqrt {1-\sec (c+d x)}}\right )}{d \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

-((Sqrt[2]*Cot[c + d*x]*Sec[(c + d*x)/2]^2*(2*Cos[c + d*x] - (ArcTanh[Sqrt[1 - Sec[c + d*x]]]*(-1 + Cos[c + d*
x]))/Sqrt[1 - Sec[c + d*x]])*((1 + Sec[c + d*x])^(-1))^(3/2)*(a*(1 + Sec[c + d*x]))^(5/2))/(d*Sqrt[1 - Tan[(c
+ d*x)/2]^2]))

________________________________________________________________________________________

fricas [B]  time = 0.71, size = 270, normalized size = 4.09 \[ \left [\frac {\sqrt {-a} a^{2} \log \left (-\frac {8 \, a \cos \left (d x + c\right )^{3} + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) + 1}\right ) \sin \left (d x + c\right ) - 8 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, d \sin \left (d x + c\right )}, -\frac {a^{\frac {5}{2}} \arctan \left (\frac {2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{2 \, a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) - a}\right ) \sin \left (d x + c\right ) + 4 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{d \sin \left (d x + c\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(-a)*a^2*log(-(8*a*cos(d*x + c)^3 + 4*(2*cos(d*x + c)^2 - cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c
) + a)/cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c) + a)/(cos(d*x + c) + 1))*sin(d*x + c) - 8*a^2*sqrt((a*cos
(d*x + c) + a)/cos(d*x + c))*cos(d*x + c))/(d*sin(d*x + c)), -(a^(5/2)*arctan(2*sqrt(a)*sqrt((a*cos(d*x + c) +
 a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c)/(2*a*cos(d*x + c)^2 + a*cos(d*x + c) - a))*sin(d*x + c) + 4*a^2*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c))/(d*sin(d*x + c))]

________________________________________________________________________________________

giac [B]  time = 2.44, size = 192, normalized size = 2.91 \[ \frac {\sqrt {2} \sqrt {-a} a^{4} {\left (\frac {\sqrt {2} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{a {\left | a \right |}} + \frac {8}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a\right )} a}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*sqrt(-a)*a^4*(sqrt(2)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2
+ 4*sqrt(2)*abs(a) - 6*a))/(a*abs(a)) + 8/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
a))^2 - a)*a))*sgn(cos(d*x + c))/d

________________________________________________________________________________________

maple [B]  time = 1.01, size = 192, normalized size = 2.91 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )-\sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+4 \cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) a^{2}}{d \left (\cos ^{2}\left (d x +c \right )-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)^2*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(1/2
*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))-2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+4*cos(d*x+c)*sin(d*x+c))/(
cos(d*x+c)^2-1)*a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cot \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)*cot(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int {\mathrm {cot}\left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^2*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cot(c + d*x)^2*(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________